
A Cluster-Ring Topology for Reliable Multicasting

Lenka Moty�ckov�a

ITN, Link�opings University

S-601 74 Norrk�oping, Sweden

lenmo@itn.liu.se

David A. Carr

IDA, Link�opings University

S-581 83 Link�oping, Sweden

davca@ida.liu.se

Esther Jennings

Dept. of Computer Science

California State Polytechnic University

Pomona, CA 91768, USA

ehjennings@csupomona.edu

Abstract Applications based on multicasting such

as real-time simulations or shared editors require

that all data packets are delivered safely in a rea-

sonably short time. Trying to assure such a high

quality of service centrally, can easily overload both

the network and the source. One technique to pre-

vent this is clustering (organizing multicast group

members into subgroups). We present an algorithm

to make clustering as natural as possible by building

clusters from groups of nodes that are close together

in dense parts of the network. The cluster building

algorithm uses only local knowledge and executes in

parallel for all nodes. We have simulated our algo-

rithm and �nd that it builds reasonable clusters for

the topologies tested. Finally, we propose an exten-

sion of RMP, a token-ring-based, reliable multicast

protocol, using our algorithm to build a ring of tree-

organized clusters. This combination makes the re-

sulting protocol scalable, which the original RMP

was not.

Keywords: clustering, reliable multicasting,

scalability, token ring

1 Introduction

Many multimedia applications based on mul-

ticasting require that all data packets are de-

livered in a reasonably short time. As the ba-

sic multicast protocols are just best e�ort pro-

tocols, receivers must have the possibility to

request a missing data packet and have it de-

livered so that a sound or picture can be pre-

sented correctly. The reliable enhancement of a

protocol creates additional packets that must

be transferred between receivers and sources.

This means that:

1. More network bandwidth is consumed by

a reliable protocol. So, we need an e�-

cient algorithm that reduces the amount

of control and retransmission tra�c while

still keeping multicasting reliable.

2. The delay before a missing data packet is

delivered should be minimized. Some ap-

plications require fast retransmissions, as

receiving a missing packet after a substan-

tial delay is useless for receivers.

3. With the growing size of the Internet as

well as growing interest in multicast ap-

plications, one can expect large multicast

groups and groups that are widely spread.

Because routers in a multicast group co-

operate when data packets are acknowl-

edged and retransmitted, growth of multi-

cast groups generally increases the load on

all intermediate routers. As this can easily

overload a router, arrangements must be

made to keep network load independent of

the number of receivers or members in a

group.



Protocols that meet this requirement are

called scalable. We propose a protocol that

uses clustering to achieve scalability. Cluster-

ing is a known technique in the area of dis-

tributed network computing. The aim is to

use local properties of the network to speed up

computation (by sharing information, prefer-

ably inside of a local group or cluster) and to

decrease overall load on the network by per-

forming as much computation as possible lo-

cally and sending globally only data that (in

some sense) represents all nodes in a cluster.

A constant load on all members of a multi-

cast group, is one of the basic issues in multi-

cast protocol design. What limitations must be

imposed on the network topology, to have con-

stant load? As routers are able to handle just

a limited number of receivers, the degree of a

node in a network graph is bounded by a con-

stant. Keeping the number of messages sent

over each link constant is the �rst issue. The

second issue is to keep the number of clusters

constant, so that the number of nodes commu-

nicating with the source{the cluster leaders{

is constant. These limitations ensure that the

throughput of all nodes in a multicast group is

independent of the size of the multicast group.

For a more detailed load explanation see the

protocol description in Section 3.

In reliable multicast protocols, a packet's

loss is detected by receivers and a negative ac-

knowledgment (NAK) is used to inform the

source of packet loss. A positive acknowl-

edgment (ACK) is used to inform the source

that a packet is successfully received by the

receiver(s). If an ACK/NAK is sent directly

to the source from every receiver for a large

group of receivers, this may cause ACK-/NAK-

implosion. The source spends nearly all of

its time processing control messages. On the

other hand, sending NAKs for only the missed

packets is not su�cient to insure reliability

[9]. Also, nodes that are incident to congested

links, might repeat NAKs and overload neigh-

boring nodes. Avoiding ACK/NAK-implosion

is important property of a scalable protocol.

Our proposed protocol avoids implosion by

using a clustered structure where ACK/NAKs

are processed locally within each cluster when-

ever possible. The source receives just a lim-

ited number of acknowledgements.

1.1 Comparison to Previous Work

Most of the reliable multicast protocols pro-

posed to date, divide receivers into groups,

to obtain a structure suitable for acknowl-

edgement processing. The tree-based, reli-

able, multicast protocol RMTP uses cluster-

ing [11]. However, its clusters have only depth

one. Also, the designated routers (cluster lead-

ers) in RMTP are chosen statically for the

multicast session. The clique clustering of [8]

uses a greedy approach to create local groups

of cliques. Packets are routed over the short-

est paths between boundary nodes in cliques.

Cliques that exist in the actual Internet topol-

ogy are of small degree (typically 2 or 3), so this

kind of cluster represents a very small fraction

of the network. In the (rooted) shared ACK-

tree of [10], a node forms a local group with B

of its children, where B is a parameter. A child

is any node within a distance less than a prede-

�ned delay. The tree structure can be consid-

ered as a clustering where a cluster is formed

by children of a single node, which becomes a

cluster leader responsible for its successors.

A known principle for organizing acknowl-

edgment of multicast messages is a circulat-

ing token principle. It guarantees totally-

ordered message delivery, naming service, good

resilience and reasonable performance. First

described in [2] for reliable and ordered broad-

cast, it was later used as a basis for the reliable

multicast protocol RMP [13]. The protocol can

handle concurrent multicast sessions in a mul-

ticast group, so the topology structure used for

acknowledgements is a shared one. The basic

entity here is a token site that communicates

with all receivers and all sources. It represents

all receivers for a source by sending only one

positive acknowledgement per message. The

source retransmits periodically until it receives

an ACK from the token site. For receivers,

the token site represents a source in the sense

that NAKs are sent to the token site instead



of directly to the source. The third kind of in-

teraction takes place between token sites. A

higher number of token sites is necessary as

a single token site may crash and impact re-

liability. Also, the NAKing mechanism does

not guarantee retransmission in the case of lost

messages. Interaction between two subsequent

token sites is based on an ACKing principle.

The next token site does not accept a token

unless it has received all messages sent so far.

This mechanism ensures that each token site

receives all multicast messages within the de-

lay proportional to the time needed by a token

to complete one round through all token sites.

If each message is stored at L token sites si-

multaneously, then the protocol is L-resilient.

This is achieved by keeping a message at the

last L token sites and only erasing it as the

token advances.

1.2 Our Aim

The main contribution of this paper is twofold.

The �rst is to propose a cluster decomposition

of a multicast group which is suitable for ac-

knowledging data packets and for local retrans-

missions in reliable multicast. Second, we pro-

pose an acknowledgement mechanism for reli-

able multicast, that is based on a token cir-

culation over the set of clusters. It combines

features of token ring and tree-based protocols.

The key idea behind our proposed struc-

ture is to divide a multicast group graph into

clusters that correspond to local groups of re-

ceivers. Our structure is a disjoint cluster

graph where the clusters are densely connected

internally, and inter-cluster links are sparse.

This structure has the following desirable prop-

erties:

Topology preserving clustering: Local

groups are formed in a manner that truly re-

ects the actual connectivity of the multicast

group, rather than forming them arbitrarily.

They are built preferably around nodes with a

high degree (large number of neighbors).

Optimal delays within clusters: Clus-

ters in the dense parts of a network have many

members, but the height of their intracluster

spanning tree is low compared to the number

of cluster nodes.

Scalability of reliable multicast proto-

col: The state information kept at each re-

ceiver is independent of the number of receivers

in the multicast group. To achieve this, the

number of token sites and the number of suc-

cessors in tree subnetworks must be bounded

by a constant.

2 Cluster-Ring Structure for

Acknowledgments

2.1 Assumptions

Using a multicast routing tree(s) provided by

best-e�ort multicast routing protocols such as

DVMRP [4], CBT [1], OCBT [12], or PIM [5],

we organize the receivers of a multicast group

into a shared ACK-cluster structure.

Beginning with an underlying shared mul-

ticast tree, we de�ne our graph G as the con-

nected subgraph of the network induced by the

vertices of the given multicast routing tree(s).

G contains all the vertices of the multicast

routing tree(s), plus all other IP-network con-

nections induced by these vertices. We only

consider router nodes in our graph G since re-

ceivers are nodes that are directly connected to

routers (as peripheral subtrees).

The aim is to create clusters which are used

as an ACK-structure. The clusters should cap-

ture the entire local dense mesh of receivers.

If an area is densely populated with receivers

and there is a reasonable branching from each

node, the diameter of the cluster is logarithmic

in terms of the number of cluster nodes. Nodes

in a cluster are close to each other (small de-

lay), and there are many near the leader.

2.2 Clustering Algorithm

The problem that we consider here is to de-

tect dense subgraphs in a network graph, and

then cover the graph by disjoint clusters, built

around the dense subgraphs. As distributed

computation is natural for networking, we pro-

pose a parallel solution to building clusters,



Let us assume a maximal value of the cluster diameter D, which de�nes the delay between the leader and

the farthest cluster member and k = Degest, an estimate of the highest degree of any node in the network

graph.

1. Every node checks its degree. If its degree is at least k, it starts to build a cluster. Note this occurs

concurrently, so clusters compete for members.

� Each potential leader sends an \o�er" message to its neighbors.

� A node without a leader waits a short delay after receiving the �rst \o�er". If more than one

\o�er" is received, it accepts the \o�er" of the node with the lowest network address and replies

with an \accept" message.

� If a leader node receives an o�er from a lower address node, it accepts and noti�es its cluster

members that it is no longer a leader. It will also reject any further accept messages.

� A node with degree at least k will forward an o�er to its neighbors as long as it is less than D

from the o�ering node.

2. To cover sparser areas, repeat step 1 for k = k � 1, until the k = 3. Nodes with leaders determined for

higher k do not change leaders; however, they do forward o�er messages as above.

3. Orphans: nodes, not included in any cluster and having only one adjacent edge, attach to the closest

cluster.

4. Chains connecting clusters are divided among closest clusters.

5. Check the number of clusters: If too many � > merge small clusters into large, then decrease the

starting k.

Figure 1: Algorithm description

that performs better in distributed environ-

ments, even if conicts occur when clusters

clash.

A dense subgraph can be detected by delet-

ing vertices with a small degree until the one

with the required dense neighborhood is found.

If an empty set is found, the procedure is re-

peated with di�erent density criteria. A second

possibility [7] (more suitable if a large subgraph

is required) is to look for the vertices with the

largest degree deg(v). We apply the second

strategy in our algorithm.

After detection of a dense kernel, a cluster

is created as a neighborhood of v by growing

the kernel according to an expansion condition.

We are looking for subgraphs including a sub-

stantial fraction of the edges with respect to

the number of edges in the entire graph. The

authors of approximation algorithms for the

related problem of computing the densest l-

vertex subgraph of a given graph [7] suggest

an expansion condition that requires the num-

ber of edges touching the subset is at least

jEj=2l�jV 0j, where E is a number of edges in G

and V 0 is number of nodes in a subset. Their

condition is based on observation that for large

l there always exists a l-vertex subgraph that

contains a substantial portion of edges in the

entire graph.

Our aim is not to detect the single densest

subgraph but to detect a number of dense sub-

graphs. Our condition is weaker compared to

[7]: The number of edges touching the subset

is Degest � jV 0j, where Degest is an estimate of

a maximal degree in a graph. Kernels must

be enlarged only with nodes that increase the

number of edges in a subgraph by a fraction

proportional to the density of the whole graph.

After detection of all dense kernels we start

growing clusters around them based on our

expansion condition. The condition is based

on the estimate of the graph density, and we

grow a subgraph as long as the condition is ful-

�lled until the limit for a maximum diameter



of a subgraph is achieved. If the graph is not

exhausted yet, we relax the expansion condi-

tion and repeat the procedure in the remaining

graph. The aim is to cover the whole graph by

clusters, but there might be parts of the net-

work, where the density requirement cannot be

ful�lled: topologies with long peripheral chains

of receivers. In this case we attach remaining

nodes to the closest clusters. Even if such a

topology is ine�cient, there is no better solu-

tion.

As the number of clusters must be limited

by a constant in order to keep a constant size

token ring, we check this parameter after each

iteration. If the bound is exceeded, it is nec-

essary to increase the size of clusters. This

is achieved by decreasing the density estimate

parameter k in the next iteration.

3 Simulation

In order to get an idea of how our clustering

algorithm performed we simulated it. We gen-

erated several 60-node networks using the Tiers

Network Topology Generator [3],[6]. The net-

works had a 10-node backbone, with �ve, 5-

node, medium-area networks attached to the

backbone, and �ve single-node LANs attached

to each MAN. All redundancies were set to 1,

except for the intra WAN and MAN to WAN

which were set to 2. An example clustering can

be seen in Figure 2. The simulation assumed:

all links had equal delays, no messages were

lost, all nodes had equal response times. These

assumptions mean that ideal performance will

be achieved. Either 5 or 6 clusters were gener-

ated for each network topology. All topologies

generated small clusters of three or four nodes

and at least one large cluster. In one case, the

large cluster contained over half of the nodes.

4 The Reliable Multicast Pro-

tocol

In this paper, we propose a reliable protocol

that combines a token-based ACK mechanism

with a tree-based one. Clusters are logically

Figure 2: Example of clusters produced by our

algorithm

connected to a token ring; each cluster is rep-

resented by a leader, that acts as a token site.

Among cluster leaders the RMP-like protocol

is used. Inside of clusters, we apply a tree-

based protocol, e.g. RMTP [11]. ACK packets

are aggregated from the leaves to the root in-

side of a cluster on a local level, and commu-

nicated to sources by token sites on a global

level. ACKs are multicast by cluster leaders

(token sites), according to the basic token ring

protocol [13]. Cluster leaders ask for retrans-

missions at the current token holder. Compos-

ing an ACK-token-ring structure of clusters in-

stead of single nodes, leads to more parallelism

in gathering ACKs. For the details of ring re-

con�guration, resiliency or congestion control,

refer to the basic protocols [13] and for tree-

based routing of ACK/NAK packets refer to

[11].

4.1 Scalability of Token-Ring Proto-

cols

The Reliable Multicast Protocol (RMP) uses

all receivers as token sites, i.e. all group mem-

bers are organized in a logical ring. RMP dis-

tributes the communication load between all

sites. Experimental results presented in [13]

show that the performance stays roughly con-



stant independent of the number of receivers.

RMP's authors also suggest including a server

into the ring of multicast group members. The

server then communicates multicast packets

to/from non-member clients. These features

move the protocol towards scalability, but in

fact do not guarantee a constant load, indepen-

dent of multicast group size, at each processor

engaged in a multicast session. Managing a

logical ring of the size of the group and send-

ing the ordered list of all members constitutes a

load that grows proportionately with the num-

ber of receivers. The need to include all re-

ceivers comes from the insu�ciency of NAKing

mechanisms.

We propose to introduce the following limi-

tations in order to guarantee scalability of an

RMP-like protocol:

� For the token ring: bound the number

of token sites. The bounding constant is

based on the capacity of the token sites to

process control messages of the protocol

that maintain the ring structure.

� For clusters: Each cluster member keeps

the list of its successors, the number of

which is bounded by a constant, and it

knows its leader. A cluster leader receives

messages only from its successors.

4.2 Cluster-Ring Topology

By making the idea of a server more general,

we get a protocol that is provably scalable. To

make the protocol scalable, the size of the ring

has to be constant. In practice, it means that

only a constant fraction of receivers can serve

as token sites. In order to guarantee scalable

reliable multicast for the whole group, mem-

bers that are not attached directly to the ring,

are connected indirectly, through their cluster

leader that serves as a token site. Cluster mem-

bers are attached to an intracluster spanning

tree, where the leader is the root and commu-

nication is on the parent-child principle. Scal-

ability of this type of protocol has been proven

in [10].

The structure that we get is a ring of clus-

ters, where for each receiver, the reliable and

ordered multicast is guaranteed by the ring

protocol. In order to provide the same service

for the cluster members, the cluster leader (the

receiver on a ring) is responsible for reliable de-

livery to members. Note that, primary multi-

cast is performed by the unreliable IP proto-

col, and cluster leaders provide only retrans-

missions in the case of packet loss. This im-

plies that a leader cannot erase packets from

its memory until it is ACKed by all cluster

members. To keep the protocol L-resilient,

the token site does not accept the token until

all packets sent so far are acknowledged by its

cluster members. Members ask for retransmis-

sions at their parents and then ACKs con�rm

receipt of a packet by all members, so that the

leader can delete a data packet from its mem-

ory. For details of tree-based protocols refer to

[11].

Acknowledgements sent by token-sites are

multicast - this means that all receivers includ-

ing those that are just cluster members and not

connected to a token ring, receive ACK pack-

ets. This also guarantees total ordering inside a

cluster. The positive feature is that our topol-

ogy supports optimal delays when communi-

cating ACKs and retransmitting inside of in-

tracluster trees. Clusters are created in dense

subnetworks, so election of token sites is there-

fore not done randomly, but it is based on the

actual topology of the multicast group.

5 Conclusion

We present an algorithm for building clus-

ters that follows the topology of multicast

groups. The method selects high-degree nodes,

attaches their neighbors, and expands around

high-degree neighbors. The algorithm insures

reasonably fast response by bounding the ra-

dius of a cluster. We simulated our algorithm

and found reasonable clustering for the topolo-

gies investigated. We further show how this

algorithm can be used to achieve scalability

for the RMP reliable multicast protocol. This



improvement creates a token ring of clusters

where a tree-based protocol is used within clus-

ters.

6 Acknowledgments

This research was supported by the Link�oping

University CENIIT program, projects 99.9 and

00.4. We would also like to thank Carl Rollo

for his help in proofreading this paper.

References

[1] Ballardie, T., Francis, P., Crowcroft, J.

Core based trees (CBT): An architecture

for scalable inter-domain multicast rout-

ing. Proc. ACM SIGCOMM (1993), 85{

95.

[2] Chang, J. M., Maxemchuk N., F. Reli-

able broadcast protocols. ACM Trans. on

Comp. Systems, 2(3), 251{273, Aug 1984.

[3] Calvert,K. L., Doar, M. B., Zegura, E. W.

Modeling internet topology. IEEE Com-

munications Magazine, 35(6), 160{163,

June 1997.

[4] Deering, S., Cheriton, D. Multicast rout-

ing in datagram inter-networks and ex-

tended lans. ACM Trans. on Comp. Sys-

tems, 8(2), 85{110, May 1990.

[5] Deering, S., Estrin, D., Farinacci, D., Ja-

cobson, V., et al. An architecture for wide-

area multicast routing. Proc. ACM SIG-

COMM, (1994) 126{135.

[6] Doar, M. B. A better model for generating

test networks. IEEE Global Telecommuni-

cations Conference/GLOBECOM'96,

London, November 1996, 86{93.

[7] Kortsarz, G., Peleg, D. On choosing a

dense subgraph. Proc. 34-th FOCS (1993),

692{701.

[8] Krishna, P., Vaidya, N., Chatterjee, M.,

Pradhan, D. A cluster-based approach for

routing in dynamic networks. ACM SIG-

COMM Computer Communication Re-

view, 27(3), 49{64, Apr 1997.

[9] Levine, B., Garcia-Luna-Aceves, J.J. A

comparison of known classes of reliable

multicast protocols. Proceedings of Inter-

national Conference on Network Protocols

(ICNP-96), 112{121, Columbus, Ohio,

Oct 29{Nov 1, 1996.

[10] Levine, B., Lavo, D., Garcia-Luna-Aceves,

J.J. The case for reliable concurrent mul-

ticasting using shared act trees. Proc. of

ACM Multimedia, 365{376, Boston, MA,

USA, Nov 1996.

[11] Lin, J. C., Paul, S. RMTP: a reliable

multicast transport protocol. Proc. INFO-

COMM'96, 1414{1424, Mar 1996.

[12] Shields, C. Ordered core based trees. Mas-

ter's thesis, University of California {

Santa Cruz (1996).

receiver-

[13] Whetten, B., Montgomery, T., Kaplan, S.

A high performance totally ordered mul-

ticast protocol. Proc. Theory and Practice

in Distributed System, LNCS vol. 938, Sep

1995.


